Fractional System of Korteweg-De Vries Equations via Elzaki Transform
نویسندگان
چکیده
In this article, a hybrid technique, called the Iteration transform method, has been implemented to solve fractional-order coupled Korteweg-de Vries (KdV) equation. Elzaki and New method are combined. The iteration solutions obtained in series form analyze analytical results of equations. To understand procedure some numerical problems presented for result It is also demonstrated that current technique’s good agreement with exact results. show only few terms sufficient obtaining an approximate result, which efficient, accurate, reliable.
منابع مشابه
Adomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملThe Time-Fractional Coupled-Korteweg-de-Vries Equations
and Applied Analysis 3 Subject to the initial condition D α−k 0 U (x, 0) = f k (x) , (k = 0, . . . , n − 1) , D α−n 0 U (x, 0) = 0, n = [α] , D k 0 U (x, 0) = g k (x) , (k = 0, . . . , n − 1) , D n 0 U (x, 0) = 0, n = [α] , (11) where ∂α/∂tα denotes the Caputo or Riemann-Liouville fraction derivative operator, f is a known function, N is the general nonlinear fractional differential operator, a...
متن کاملCoupled Korteweg-de Vries equations
When a system supports two distinct long-wave modes with nearly coincident phase speeds, the weakly nonlinear and linear dispersion unfolding generically leads to two coupled Korteweg-de Vries equations. In this paper, we review the derivation of such systems in stratified fluids, extending previous studies by allowing for background shear flows. Coupled Korteweg-de Vries systems have very rich...
متن کاملNumerical inverse scattering for the Korteweg–de Vries and modified Korteweg–de Vries equations
Recent advances in the numerical solution of Riemann–Hilbert problems allow for the implementation of a Cauchy initial value problem solver for the Korteweg–de Vries equation (KdV) and the defocusing modified Korteweg–de Vries equation (mKdV), without any boundary approximation. Borrowing ideas from the method of nonlinear steepest descent, this method is demonstrated to be asymptotically accur...
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9060673